Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data.

نویسندگان

  • Lane F Burgette
  • Jerome P Reiter
چکیده

Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Probit and nested logit models based on fuzzy measure

Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...

متن کامل

Relaxing the IIA Assumption in Locational Choice Models: A Comparison Between Conditional Logit, Mixed Logit, and Multinomial Probit Models∗

This paper estimates a locational choice model to assess the demand for local public services, using a data set where individuals chooses between 26 municipalities within a local labor market. We assess the importance of the IIA assumption by comparing the predictions of three difference models; the conditional logit (CL) model, the mixed logit (MXL) model, and the multinomial probit (MNP) mode...

متن کامل

Computing adjusted risk ratios and risk differences in Stata

This paper explains how to calculate adjusted risk ratios and risk differences when reporting results from logit, probit, and related nonlinear models. Building on Stata’s margins command, we create a new post-estimation command adjrr that calculates adjusted risk ratios (ARR) and adjusted risk differences (ARD) after running logit or probit models with either binary, multinomial, or ordered ou...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bayesian analysis

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2013